3.957 \(\int \frac{x^3}{\sqrt{a+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=68 \[ \frac{\sqrt{a+b x^2+c x^4}}{2 c}-\frac{b \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 c^{3/2}} \]

[Out]

Sqrt[a + b*x^2 + c*x^4]/(2*c) - (b*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(4*c^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0539312, antiderivative size = 68, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {1114, 640, 621, 206} \[ \frac{\sqrt{a+b x^2+c x^4}}{2 c}-\frac{b \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 c^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/Sqrt[a + b*x^2 + c*x^4],x]

[Out]

Sqrt[a + b*x^2 + c*x^4]/(2*c) - (b*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(4*c^(3/2))

Rule 1114

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^3}{\sqrt{a+b x^2+c x^4}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )\\ &=\frac{\sqrt{a+b x^2+c x^4}}{2 c}-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{4 c}\\ &=\frac{\sqrt{a+b x^2+c x^4}}{2 c}-\frac{b \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^2}{\sqrt{a+b x^2+c x^4}}\right )}{2 c}\\ &=\frac{\sqrt{a+b x^2+c x^4}}{2 c}-\frac{b \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 c^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0140484, size = 68, normalized size = 1. \[ \frac{\sqrt{a+b x^2+c x^4}}{2 c}-\frac{b \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{4 c^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/Sqrt[a + b*x^2 + c*x^4],x]

[Out]

Sqrt[a + b*x^2 + c*x^4]/(2*c) - (b*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(4*c^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.172, size = 56, normalized size = 0.8 \begin{align*}{\frac{1}{2\,c}\sqrt{c{x}^{4}+b{x}^{2}+a}}-{\frac{b}{4}\ln \left ({ \left ({\frac{b}{2}}+c{x}^{2} \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{4}+b{x}^{2}+a} \right ){c}^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

1/2*(c*x^4+b*x^2+a)^(1/2)/c-1/4*b/c^(3/2)*ln((1/2*b+c*x^2)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.62224, size = 383, normalized size = 5.63 \begin{align*} \left [\frac{b \sqrt{c} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} + 4 \, \sqrt{c x^{4} + b x^{2} + a}{\left (2 \, c x^{2} + b\right )} \sqrt{c} - 4 \, a c\right ) + 4 \, \sqrt{c x^{4} + b x^{2} + a} c}{8 \, c^{2}}, \frac{b \sqrt{-c} \arctan \left (\frac{\sqrt{c x^{4} + b x^{2} + a}{\left (2 \, c x^{2} + b\right )} \sqrt{-c}}{2 \,{\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right ) + 2 \, \sqrt{c x^{4} + b x^{2} + a} c}{4 \, c^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(b*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 + 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c) +
4*sqrt(c*x^4 + b*x^2 + a)*c)/c^2, 1/4*(b*sqrt(-c)*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c
^2*x^4 + b*c*x^2 + a*c)) + 2*sqrt(c*x^4 + b*x^2 + a)*c)/c^2]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{a + b x^{2} + c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(x**3/sqrt(a + b*x**2 + c*x**4), x)

________________________________________________________________________________________

Giac [A]  time = 1.19704, size = 82, normalized size = 1.21 \begin{align*} \frac{b \log \left ({\left | -2 \,{\left (\sqrt{c} x^{2} - \sqrt{c x^{4} + b x^{2} + a}\right )} \sqrt{c} - b \right |}\right )}{4 \, c^{\frac{3}{2}}} + \frac{\sqrt{c x^{4} + b x^{2} + a}}{2 \, c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

1/4*b*log(abs(-2*(sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))*sqrt(c) - b))/c^(3/2) + 1/2*sqrt(c*x^4 + b*x^2 + a)/c